已知数列{an}的前n项和为Sn.且满足a1=1/2,an=−2SnSn−1(n≥2) (1)证明:数列{1/Sn}为等差数列; (2)求Sn及an.

解(1)当n≥2时,an=Sn-Sn-1=-2Sn•Sn-1,∴1Sn−1Sn−1=2(n≥2),∴{1Sn}是以1S1=1a1=2为首项,2为公差的等差数列.(2)∵数列{1Sn}为等差数列,∴1Sn=2 2(n−1)=2n,即Sn=12n.当n≥2时,an=Sn−Sn−1=1...

更多阅读