已知函数f(x)=x^2/2x 1(x>0)当x1>0,x2>0且f(x1)*f(x2)=1求证:x1*x2>=3 2倍根号2

x1^2*x2^2=4x1x2 2(x1 x2) 1
≥4x1x2 4√(x1x2) 1
令t=√x1x2
t^4-4t^2-4t-1≥0
(t^4-2t^2 1)-2(t^2 2t 1)≥0
(t^2-1)^2-2(t 1)^2≥0
((t 1)(t-1))^2-2(t 1)^2≥0
(t 1)^2((t-1)^2-2)≥0
显然(t 1)^2≥0
所以(t-1)^2-2≥0
t-1≥√2
t≥√2 1
√x1x2≥√2 1
x1x2≥3 2√2

更多阅读